Modern physics expermients

electron-forms-spiral-path

La recherche continue des standard de qualité les plus élevées et économique nous permet d’offrir une gamme complète d’instruments et d’équipements scientifiques de laboratoire. Celles-ci ont été conçus et fabriqués spécialement pour l’éducation de la physique expérimentale dans les écoles, les collèges et les universités, faciles à utiliser et à des prix abordables.

La ligne comprend des kit d’experimentation de mécanique, thermodynamique, électromagnétisme, l’optique et la physique. Tous les produits comprend matériaux de support et des manuels de formation détaillés.

La ligne de Mécanique / Physique générale couvrant les thèmes de la force, le mouvement, les oscillations, etc

La ligne de la thermodynamique / Physique générale couvrant les thèmes de la dilatation thermique, la capacité thermique, la conversion de l’énergie, la théorie cinétique, etc

La ligne de Electromagnétisme couvre des sujets de charge électrique, effet Hall, le champ magnétique, l’hystérésis magnétique, interférences, diffraction et la polarisation des ondes électromagnétiques, etc

La ligne de l’optique sur les sujets de l’optique géométrique, optique physique, l’optique moderne, etc

La ligne de physique avancée offre kit fonctionnel pour les sujets suivants:

APE.101

Zeeman Effect with an Electromagnet

Objectives of the Experiment

  • Observing transverse Zeeman Effect phenomenon.
  • Calculating the value of e/m.
  • Observing longitudinal Zeeman Effect phenomenon

Zeeman-Effect-with-an-Electromagnet

 

 

 

 

 

 

How it works

The apparatus can be used to study normal Zeeman shift of the spectral lines of mercury at λ=546.1nm.The experiment starts with calibration of electromagnet. Thereafter, optical system is aligned to observe the circular fringes on the computer monitor due to the interference of green light from mercury lamp at the Fabry-Perot interferometer. As the magnetic field increases, the line splitting can be observed in real time on the monitor. When observe the splitting of K-2 circular fringe clearly, images are saved in the computer for analysis and calculation. The e/m ratio can also be determined from the experiment.

Also, when the electromagnet is rotated 90 degrees, the direction of magnetic field parallels optical axis, the longitudinal Zeeman Effect will be observed too.

Features

• Mercury lamp as a light source, cheap and no special maintenance.

• USB connection with PC to provide efficient and convenient signal acquisition.

• The interference filter, the Fabry-Perot interferometer, the collimating lens and the polarizing filter are on easily adjustable post to ensure same height.

• The high resolution CMOS camera and Fabry-Perot interfometer to ensure clear and high contrasting rings image.

• An intelligent analyzing software is included to show and analyze the spectral splitting lines easily.

Typical Result

intensity-magnetic-zero,

When the intensity of magnetic field is zero, the energy level doesn’t split

energy-level-splitting

When the intensity of magnetic is strong enough, the energy level is splitting. We can see nine spectral lines.

transverse-zeeman-effect

Transverse Zeeman Effect

transverse-zeeman-effect

Longitudinal Zeeman Effect

 

Part List

No. Material List Model# Qty

1 Image Unit, includes CMOS Camera and Lens, f=50mm, 2 million pixels, Q.ty 1

2 Fabry-Perot Interferometer, λ=546.1nm, Q.ty 1

3 Interference Filter, λ=546.1nm, Q.ty 1

4 Polarizing Filter , Q.ty 1

5 Collimating Lens, f=125mm, Q.ty 1

6 Precision Kinematic Optical Mount, Φ45mm, 2D, Q.ty 1

7 Horizontal Adjustable Precision Kinematic Optical Mount, Φ45mm, Travel=36mm , 3D, Q.ty 1

8 Track, L600mm, Q.ty 1

9 Optical Carrier, 50mm, Q.ty 3

10 Adjustable Post Holder, Travel=25mm, Q.ty 3

11 Post, 90mm, Q.ty 3

12 Pen Type Mercury Lamp, 10A, 3W , Q.ty 1

13 Electromagnet with Pole Shoes and Connection Block, 5A, 1.2T , Q.ty 1

14 Tunable DC (Constant Current) Power Supply, 110V/220V, 6A , Q.ty 1

15 Teslameter, 0-2000mT, Accuracy is 0.1mT , Q.ty 1

16 Zeeman Software , Q.ty 1

APE.103

Specific Charge of the Electron (e/m)

Objectives of the Experiment

  • Observe the trajectory of the electron beam in a magnetic field.
  • Determine the specific charge of an electron.

charge-electron

How it works

A large, helium-filled electron tube is mounted between a pair of Helmholtz coils. The tube contains an electron gun, which generates a focused beam of electrons. A measured current is applied to the Helmholtz coils so that the magnitude of the magnetic field within the electron tube can be calculated. A measured accelerating potential (V) is then applied to the electron gun. The magnetic field (B) deflects the electron beam in a circular path with a radius (r) that is measured using the illuminated mm scale. From these measured values, the charge-to-mass ratio of the electron is calculated: e/m = 2V/B2r2.

Features

• Detachable helmholtz coils for high flexibility and easy storage.

• Bright, highly focused beam.

• Eliminates parallax errors for general study of electrons in a magnetic field.

• Illuminated, mirrored scale even in a dark environment.

• Rotatable tube.

Typical Result

electron-horizontal

The electron beam is initially horizontal and is visible as a weak, bluish ray.

electron-circle

Increase the current passing through the coils watch until the electron beam forms a closed circle.

electron-forms-spiral-path

Slightly turn the e/m tube, along with its base, around its vertical axis, thus the electron beam forms a spiral path.

Part List

 

1 Tunable DC (Constant Voltage) Power Supply II, 12V/100V/200V , Q.ty 1

2 Tunable DC(Constant Current) Power Supply 3.5A/6.3V , Q.ty 1

3 e/m Tube , Q.ty 1

4 e/m Base, includes Helmholtz Coils , Q.ty 1