Esperienze di Fisica Moderna

MODERN PHYSICS EXPERIMENTS

(Esperienze di fisica moderna)

La continua ricerca dei migliori standard qualitativi ed economici ci permette di proporre e commercializzare una linea completa di strumenti scientifici e apparecchiature di laboratorio. Questi sono stati progettati e realizzati appositamente per l’educazione sperimentale in FISICA presso scuole superiori e università, sono di facile utilizzo e a prezzi accessibili.

La linea include kit sperimentali in meccanica, termodinamica, elettromagnetismo, ottica e fisica avanzata. Tutti i prodotti sono dotati di materiali didattici dettagliati e manuali.

La linea di Meccanica/Fisica Generale copre gli argomenti di forza, moto, oscillazioni e onde, etc.

La linea di Termodinamica/Fisica Generale copre gli argomenti di espansione termica, capacità termica, conversione dell’energia, transizione di fase e teoria cinetica, etc.

La linea di Elettromagnetismo copre gli argomenti di carica elettrica, Effetto Hall, campo magnetico, isteresi magnetica, interferenza, diffrazione e polarizzazione di onde elettromagnetiche, etc.

La linea di Ottica copre gli argomenti di ottica geometrica, ottica fisica, ottica moderna, etc.

La linea di Fisica Avanzata propone kit funzionali per i seguenti argomenti:

APE.101

Zeeman Effect with an Electromagnet 

Objectives of the Experiment

  • Observing transverse Zeeman Effect phenomenon.
  • Calculating the value of e/m.
  • Observing longitudinal Zeeman Effect phenomenon

Zeeman-Effect-with-an-Electromagnet

 

 

 

 

 

 

How it works

The apparatus can be used to study normal Zeeman shift of the spectral lines of mercury at λ=546.1nm.The experiment starts with calibration of electromagnet. Thereafter, optical system is aligned to observe the circular fringes on the computer monitor due to the interference of green light from mercury lamp at the Fabry-Perot interferometer. As the magnetic field increases, the line splitting can be observed in real time on the monitor. When observe the splitting of K-2 circular fringe clearly, images are saved in the computer for analysis and calculation. The e/m ratio can also be determined from the experiment.

Also, when the electromagnet is rotated 90 degrees, the direction of magnetic field parallels optical axis, the longitudinal Zeeman Effect will be observed too.

Features

• Mercury lamp as a light source, cheap and no special maintenance.

• USB connection with PC to provide efficient and convenient signal acquisition.

• The interference filter, the Fabry-Perot interferometer, the collimating lens and the polarizing filter are on easily adjustable post to ensure same height.

• The high resolution CMOS camera and Fabry-Perot interfometer to ensure clear and high contrasting rings image.

• An intelligent analyzing software is included to show and analyze the spectral splitting lines easily.

Typical Result

intensity-magnetic-zero,

When the intensity of magnetic field is zero, the energy level doesn’t split

energy-level-splitting

When the intensity of magnetic is strong enough, the energy level is splitting. We can see nine spectral lines.

transverse-zeeman-effect

Transverse Zeeman Effect

transverse-zeeman-effect

Longitudinal Zeeman Effect

 

Part List

No. Material List Model# Qty

1 Image Unit, includes CMOS Camera and Lens, f=50mm, 2 million pixels, Q.ty 1

2 Fabry-Perot Interferometer, λ=546.1nm, Q.ty 1

3 Interference Filter, λ=546.1nm, Q.ty 1

4 Polarizing Filter , Q.ty 1

5 Collimating Lens, f=125mm, Q.ty 1

6 Precision Kinematic Optical Mount, Φ45mm, 2D, Q.ty 1

7 Horizontal Adjustable Precision Kinematic Optical Mount, Φ45mm, Travel=36mm , 3D, Q.ty 1

8 Track, L600mm, Q.ty 1

9 Optical Carrier, 50mm, Q.ty 3

10 Adjustable Post Holder, Travel=25mm, Q.ty 3

11 Post, 90mm, Q.ty 3

12 Pen Type Mercury Lamp, 10A, 3W , Q.ty 1

13 Electromagnet with Pole Shoes and Connection Block, 5A, 1.2T , Q.ty 1

14 Tunable DC (Constant Current) Power Supply, 110V/220V, 6A , Q.ty 1

15 Teslameter, 0-2000mT, Accuracy is 0.1mT , Q.ty 1

16 Zeeman Software , Q.ty 1

APE.103

Specific Charge of the Electron (e/m) 

Objectives of the Experiment

  • Observe the trajectory of the electron beam in a magnetic field.
  • Determine the specific charge of an electron.

charge-electron

How it works

A large, helium-filled electron tube is mounted between a pair of Helmholtz coils. The tube contains an electron gun, which generates a focused beam of electrons. A measured current is applied to the Helmholtz coils so that the magnitude of the magnetic field within the electron tube can be calculated. A measured accelerating potential (V) is then applied to the electron gun. The magnetic field (B) deflects the electron beam in a circular path with a radius (r) that is measured using the illuminated mm scale. From these measured values, the charge-to-mass ratio of the electron is calculated: e/m = 2V/B2r2.

Features

• Detachable helmholtz coils for high flexibility and easy storage.

• Bright, highly focused beam.

• Eliminates parallax errors for general study of electrons in a magnetic field.

• Illuminated, mirrored scale even in a dark environment.

• Rotatable tube.

Typical Result

electron-horizontal

The electron beam is initially horizontal and is visible as a weak, bluish ray.

electron-circle

Increase the current passing through the coils watch until the electron beam forms a closed circle.

electron-forms-spiral-path

Slightly turn the e/m tube, along with its base, around its vertical axis, thus the electron beam forms a spiral path.

Part List

 

1 Tunable DC (Constant Voltage) Power Supply II, 12V/100V/200V , Q.ty 1

2 Tunable DC(Constant Current) Power Supply 3.5A/6.3V , Q.ty 1

3 e/m Tube , Q.ty 1

4 e/m Base, includes Helmholtz Coils , Q.ty 1